$$\partial_{\epsilon} f = -\frac{\vec{p}}{m} \cdot \frac{\partial f}{\partial \vec{q}} + C(f, f)$$

We rewrite the (BE) as
$$\frac{1}{2}f = -\zeta_F f + \frac{1}{2}\hat{c}(f_r f)$$
 (1)

where
$$L_F f = T_F \frac{\vec{p}}{m} \cdot \frac{\partial}{\partial \vec{q}} f \sim O(1)$$
and $C(f,f) = T_{MFP} C(f,f) \sim O(1)$
There is a such that $E = \frac{T_{MFP}}{T_{FF}}$

Perturbation theory

$$f(\vec{q},\vec{p},t) = f_o(\vec{q},\vec{p},t) + \varepsilon f_o(\vec{q},\vec{p},t)$$

$$O(\frac{1}{e}): 0 = C(f_0, f_0) \Rightarrow f_0 = f^{LeQ}$$
 $O(1): \partial_{\xi} f_0 + L_1 f_0 = C(f_0, f_0) + C(f_1, f_0)$

leading order & slow fields

 $f_{\sigma}(\vec{q}',\vec{p}',t) = \widetilde{\mathcal{T}}(\vec{q}',t) e^{-\widetilde{\mathcal{T}}(\vec{q}',t)} \cdot \vec{p}' - \beta(\vec{q}',t) \left[\frac{\vec{p}'}{2m} + U(\vec{q}')\right]$

Con we poucuetrize to in terms of the conserved fields!

durity $M(\vec{q},t) = \int d\vec{p} f(\vec{q},\vec{p},t)$ (d)

moneuteur $\vec{w}(\vec{q}, t) = \int d\vec{p} \cdot \vec{p} f(\vec{q}, \vec{p}, t)$ (m)

hinetic lung $K(\vec{q},t) = \int d\vec{p} \frac{\vec{p}}{2m} f(\vec{q},\vec{p},t)$ (1)

In principle, $M = M_0 + \varepsilon M_1 + \varepsilon^2 M_2$, $\vec{\omega} = \vec{\omega}_0 + \varepsilon \vec{\omega}_1 + \varepsilon^2 \omega_2 + \cdots$ $K = K_0 + \varepsilon K_1 + \varepsilon^2 K_2$

(d, m, h), to adu o, show that mo, wo do no determine entirely for which is a Gaussian function, hence entirely determined by its manalization of two first monets.

To determine the evolution of for we can thus use the evolution of m, is & K = s let's build them!

Evolution of the density field

$$m(\vec{q}) = \int d^3 \vec{p} \cdot f(\vec{q}) \vec{p} = \int d^3 \vec{p} \cdot (BE)$$
 gives

$$\frac{\partial_{\varepsilon} M + \frac{\partial}{\partial q^{2}} \cdot \int d^{3}\vec{p}_{i} + \frac{\vec{p}_{i}}{m} = \int d^{3}\vec{p}_{i} d^{3}\vec{p}_{i} d^{3}\vec{p}_{i} d^{2}\vec{q} + |\vec{r}_{i}| \cdot \vec{r}_{i}^{2} - |\vec{r}_{i}| \cdot |\vec{r}_{i}| \cdot$$

$$\frac{\partial_{\xi} m + \frac{\partial}{\partial \vec{q}} \cdot j(\vec{q}) = \frac{1}{4} \int_{0}^{3} \vec{p}_{i} J^{3} J^{3}$$

(=)
$$\frac{\partial}{\partial x} m + \frac{\partial}{\partial q} \cdot \vec{\beta}(\vec{q}) = 0$$
 local conservation law

Velocity field: f (q',p',t) is locally proportional to the number of particles = so is $\vec{j}(\vec{q})$, one thus defines a local velocity field as $j(\vec{q},t) \equiv m(\vec{q},t) \vec{u}(\vec{q},t)$

This can be rewritten as
$$\tilde{\mu}(\vec{q},t) = \frac{\int d^3\vec{p} \cdot \vec{r} + (\vec{q},\vec{p},\epsilon)}{\int d^3\vec{p} \cdot \vec{r} + (\vec{q},\vec{p},\epsilon)} = \langle \vec{r} \rangle_{\vec{q},\vec{q}}$$

when
$$\langle \mathcal{O}(\vec{p}) \rangle_{\vec{q}} = \int d^3 \vec{p} \, \mathcal{O}(\vec{p}) \, \mathcal{I}_{\vec{q}}(\vec{p})$$

and
$$S_{f,\vec{q}} = \frac{f(\vec{q}',\vec{p},t)}{\int J^3 \vec{p}' f(\vec{q}',\vec{p},t)}$$
 is the conditional probability durity. Hutaparticle at \vec{q}' has more \vec{p} .

To lighten motation, in this chapter we drop the subscipt

Evolution equation for the durity field

$$\partial_{\xi} M(\vec{q}, \xi) = -\frac{\partial}{\partial \vec{q}} \cdot \left[\vec{u}'(\vec{q}', \xi) M(\vec{q}', \xi) \right]$$
 (1)

Material derivatives

(1)
$$\iff$$
 $\partial_{\epsilon} \vec{n} + \vec{u} \cdot \frac{\partial}{\partial \vec{q}} \vec{n} = -n \frac{\partial}{\partial \vec{q}} \cdot \vec{u}$

when
$$D_{\xi} = \frac{\partial}{\partial \xi} + \bar{u}' \cdot \frac{\partial}{\partial \bar{q}} = \frac{\partial}{\partial \xi} + u_{\alpha} \frac{\partial}{\partial q_{\alpha}}$$

is the material derivative

and summations over repeated indices are implicit.

(1) is mice but not closed = dynamics of it

Evolution of the velocity field

$$\partial_{\epsilon} u_{\alpha} = -\frac{\partial_{\epsilon} m}{m^2} \int d\rho v_{\alpha} f + \frac{1}{m} \int d\rho v_{\alpha} \partial_{\epsilon} f$$

$$=\frac{\partial_{q_{\beta}}(\mathcal{M}_{\beta^{m}})}{m}\mathcal{M}_{\alpha}+\frac{1}{m}\int_{\alpha}^{\beta} d\rho \, v_{\alpha}\left[-v_{\beta} \, \partial_{q_{\beta}}f\right]+\frac{1}{m}\int_{\alpha}^{\beta} d\rho \, d\rho \, d\rho \, d\sigma \, |\vec{v_{i}}-\vec{v_{i}}| \left(f_{i}f_{i}-f_{i}f_{i}\right)v_{i,\alpha}$$

$$\int_{\alpha}^{\beta} sq_{m,m}e^{i\vec{v_{i}}} ds_{i,\alpha}$$

$$= \mathcal{L}_{a} \partial_{q_{\beta}} \mathcal{L}_{\beta} + \frac{\mathcal{L}_{a} \mathcal{L}_{\beta}}{m} \partial_{q_{\beta}} m - \frac{1}{m} \partial_{q_{\beta}} \int d\rho \, \nabla_{a} \nabla_{\beta} \, f + \frac{1}{4m} \int d\rho_{i} \, d\rho_{i} \, |\tilde{\mathcal{T}}_{i} - \tilde{\mathcal{T}}_{i}| \, \left(f_{i}' f_{i}' + f_{i} f_{i} \right)$$

(Vint Vinc - Vinc - Vinc) = 0 Simu PCM = PCM

=stru for any collisional invariant

$$D_{\xi} \mathcal{M}_{\alpha} = \partial_{\xi} \mathcal{M}_{\alpha} + \mathcal{M}_{\beta} \partial_{q_{\beta}} \mathcal{M}_{\alpha} = \partial_{q_{\beta}} \left(\mathcal{M}_{\alpha} \mathcal{M}_{\beta} \right) + \frac{\mathcal{M}_{\alpha} \mathcal{M}_{\beta}}{m} \partial_{q_{\beta}} m - \frac{1}{m} \partial_{q_{\beta}} \left(m < \mathcal{N}_{\alpha} \mathcal{N}_{\beta} > \right)$$

This suggests in troducing the pressure tensor

$$P_{\alpha\beta} = m \, m \, \langle (v_{\alpha} - M_{\alpha}) (v_{\beta} - M_{\beta}) \rangle = m \, m \, \langle \delta v_{\alpha} \, \delta v_{\beta} \rangle$$

$$m \mathcal{D}_{\xi} \mathcal{L}_{\alpha} = -\frac{1}{n} \partial_{q} \mathcal{D}_{\beta} \cdot \mathcal{P}_{\alpha\beta} \iff m \mathcal{D}_{\xi} \mathcal{U} = -\frac{1}{n} \mathcal{D}_{\zeta} \mathcal{D}_{\zeta} \mathcal{D}_{\zeta}$$
(2)

Comments : X (1) & (1) ene like the Navier Stokes equations for

6

u gas.

* To close (1) d (2) to order E°, we need to compute Pap d
thus know f°. We still miss the second moment of p to do that.

Evolution of the himetic energy:

$$\varepsilon = \langle \frac{1}{2} m \delta \vec{v}^2 \rangle = \frac{1}{2} m \left(\langle \vec{v}^2 \rangle - \vec{u}^2 \right)$$

Poinful algebra leads to:

$$\frac{\partial}{\partial \xi} \mathcal{E} + \mathcal{N}_{\alpha} \partial_{q_{\alpha}} \mathcal{E} = -\frac{1}{m} \partial_{\alpha} h_{\alpha} - \frac{1}{m} P_{\alpha \beta} \mathcal{N}_{\alpha \beta}$$
 (3)

where:

*
$$U_{\alpha\beta} = \frac{1}{2} \left(\partial_{\alpha} u_{\beta} + \partial_{\alpha\beta} u_{\alpha} \right)$$
 is the strain nate tensor
* $U_{\alpha} = \frac{m m}{2} \left(\delta v_{\alpha} \delta v_{\beta} \delta v_{\beta} \right)$ is the himstic lung of flux
 $= \tilde{L} = \frac{m m}{2} \left(\delta v^{2} ||\delta v^{2}||^{2} \right)$ also called heat flux

$$\frac{P_{noof} \circ f \quad Eq \quad (3) :}{\partial_{\varepsilon} (m\varepsilon)} = \frac{1}{2} m \quad \mathcal{L} \int_{\varepsilon} d^{3}\vec{p} \cdot f \quad (\vec{v} \cdot \vec{u})^{2}$$

$$= \frac{m}{2} \int_{\varepsilon} d^{3}\vec{p} \cdot (\vec{v} \cdot \vec{u})^{2} \partial_{\varepsilon} f + m \int_{\varepsilon} d^{3}\vec{p} \cdot f \quad (\vec{u} \cdot \vec{v}) \partial_{\varepsilon} \vec{u}$$

$$\Theta = m \partial_{\epsilon} u \left[\vec{u} \int_{c} d^{3} \vec{p} f - \int_{c} d^{3} \vec{p} f \vec{v} \right] = 0$$

$$= h \partial_{\xi} (m \varepsilon) = - \partial_{q_{\alpha}} \left[\frac{m m}{2} \left\langle \delta \tilde{v}^{2} \nabla_{\alpha} \right\rangle \right] - \left(\partial_{q_{\alpha}} u_{\beta} \right) P_{\alpha\beta}$$

$$= h \partial_{\xi} \varepsilon + \varepsilon \partial_{\xi} m = m \partial_{\xi} \varepsilon - \varepsilon \partial_{q_{\alpha}} (m u_{\alpha}) = m \partial_{\varepsilon} \varepsilon - \partial_{q_{\alpha}} (m \varepsilon u_{\alpha}) + h u_{\alpha} \partial_{\xi} \varepsilon$$

All in all,
$$\partial_{\xi} \mathcal{E} + \mathcal{U}_{\alpha} \partial_{q_{\alpha}} \mathcal{E} = -\frac{1}{n} \partial_{q_{\alpha}} \left[\frac{n \, m}{2} \left\langle \delta \hat{\mathbf{r}}^{2} \delta \mathbf{r}_{\alpha} \right\rangle \right] - \frac{1}{n} P_{\alpha \beta} \mathcal{U}_{\alpha \beta} - n \mathcal{E}_{q} (3)$$

Temperature field

It is useful to define $T(\vec{q}, t) = \frac{2}{3} \frac{\mathcal{E}(\vec{q}, t)}{L_B}$ such that $\mathcal{E} = \frac{3}{2} \log \tau$ and

Closene: We can mow close everything to order E°.

We can use m, u, i to order E° to characterize fo & fo to compute Pol ho

which in term close the dynamics for M, M, T to order E?

Notation: Ao a A refer to the observable A at order E?

2.4.3) hading order dynamics

Given Morto, vo, we determine for through

$$\int f_0 d\vec{p} = M_0$$

$$\int \vec{v} f_0 d\vec{p} = \vec{u}_0$$

$$\int \frac{m}{2} (\vec{v} - \vec{u}_0)^2 f_0 d\vec{p} = M_0(\vec{q}) \xi_0(\vec{q})$$

$$= \frac{2}{2} M_0 k_B T_0(\vec{q})$$

$$\int_{0} \left[\vec{q}_{1} \vec{p}_{1} t \right] = \frac{m_{o} \left[\vec{q}_{1} t \right]}{\left[2 \pi m \cdot k_{B} T_{o} \left(\vec{q}_{1} t \right) \right]^{3/2}} = \frac{\left[\vec{p} - m \vec{k} t \right]^{2}}{2 m \cdot k_{B} T_{o} T_{o}^{2} t} \\
= \frac{m_{o}}{\left[2 \pi m \cdot k_{B} T_{o} \right]^{3/2}} e^{-\frac{m_{o} T_{o}}{2 m \cdot k_{B} T_{o}^{2}} t}$$

Pressure & heat flux

Pap = nom < sua sup> = m m. legio dap = no ho io dap

The pressur is isotropic and obegs the ideal gas law!

 $l_{\alpha}^{o} \propto \langle \delta v^{2} \delta v_{\alpha} \rangle = 0$ since it involves an odd of a Gaussian.

9

leading order dynais

$$\partial_{\varepsilon} m_{o} + \vec{\lambda}_{o} \cdot \vec{\partial} m_{o} = -m_{o} \vec{\partial} \cdot \vec{\lambda}_{o}$$
 (1)

$$M\left[\overrightarrow{\partial}_{\xi} \overrightarrow{u}_{o} + \overrightarrow{v}_{o} \cdot \overrightarrow{\nabla} \overrightarrow{u}_{o} \right] = -\frac{1}{m} \overrightarrow{\nabla} \cdot \left(N_{o} h_{B} T \right)$$
 (2)

$$\partial_{\xi} T_{o} + \vec{x} \cdot \vec{\nabla} T_{o} = -\frac{2}{3} T_{o} \vec{\nabla} \cdot \vec{x}. \tag{3}$$

To order E°, f=f° is left invariant by collisions, but transport occurs due to ff, H, Z, which leads to some evolution of mo, to. Is it enough to equilibration